Experimenting an approximation algorithm for the LCS
نویسندگان
چکیده
منابع مشابه
Experimenting an approximation algorithm for the LCS
The problem of finding the longest common subsequence (lcs) of a given set of sequences over an alphabet Σ occurs in many interesting contexts, such as data compression and molecular biology, in order to measure the “similarity degree” among biological sequences. Since the problem is NP-complete in its decision version (i.e. does there exist a lcs of length at least k, for a given k?) even over...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولConstrained LCS: Hardness and Approximation
The problem of finding the longest common subsequence (LCS) of two given strings A1 and A2 is a well-studied problem. The constrained longest common subsequence (C-LCS) for three strings A1, A2 and B1 is the longest common subsequence of A1 and A2 that contains B1 as a subsequence. The fastest algorithm solving the C-LCS problem has a time complexity of O(m1m2n1) where m1, m2 and n1 are the len...
متن کاملAn Input Sensitive Online Algorithm for LCS Computation
We consider the classic problem of computing (the length of) the longest common subsequence (LCS) between two strings A and B with lengths m and n, respectively. There are several input sensitive algorithms for this problem, such as the O(σn+min{Lm,L(n−L)}) algorithms by Rick [15] and Goeman and Clausen [5] and the O(σn + min{σd, Lm}) algorithms by Chin and Poon [4] and Rick [15]. Here L is the...
متن کاملExperimental Evaluation of an Efficient Cache - Oblivious LCS Algorithm
We present the results of an extensive computational study of an I/O-optimal cache-oblivious LCS (longest common subsequence) algorithm developed by Chowdhury and Ramachandran. Three variants of the algorithm were implemented (CO denoting the fastest variant) along with the widely used linear-space LCS algorithm by Dan Hirschberg (denoted Hi). Both algorithms were tested on both random and real...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2001
ISSN: 0166-218X
DOI: 10.1016/s0166-218x(00)00300-0